Rotavirus infection impairs intestinal brush-border membrane Na(+)-solute cotransport activities in young rabbits.
نویسندگان
چکیده
The mechanism of rotavirus diarrhea was investigated by infecting young, specific pathogen-free, New Zealand rabbits with a lapine rotavirus, strain La/RR510. With 4-wk-old animals, virus shedding into the intestinal lumen peaked at 72 h postinfection (hpi), and a mild, watery diarrhea appeared at 124 hpi. No intestinal lesions were seen up to 144 hpi, indicating that diarrhea does not follow mucosal damage but can precede it, as if cell dysfunction were the cause, not the consequence, of the histological lesions. Kinetic analyses with brush-border membrane vesicles isolated from infected rabbits revealed strong inhibition of both Na(+)-D-glucose (SGLT1) and Na(+)-L-leucine symport activities. For both symporters, only maximum velocity decreased with time. The density of phlorizin-binding sites and SGLT1 protein antigen in the membrane remained unaffected, indicating that the virus effect on this symporter is direct. Because SGLT1 supports water reabsorption under physiological conditions, the mechanism of rotavirus diarrhea may involve a generalized inhibition of Na(+)-solute symport systems, hence, of water reabsorption. Massive water loss through the intestine may eventually overwhelm the capacity of the organ for water reabsorption, thereby helping the diarrhea to get established.
منابع مشابه
Direct inhibitory effect of rotavirus NSP4(114-135) peptide on the Na(+)-D-glucose symporter of rabbit intestinal brush border membrane.
The direct effect of a rotavirus nonstructural glycoprotein, NSP4, and certain related peptides on the sodium-coupled transport of D-glucose and of L-leucine was studied by using intestinal brush border membrane vesicles isolated from young rabbits. Kinetic analyses revealed that the NSP4(114-135) peptide, which causes diarrhea in young rodents, is a specific, fully noncompetitive inhibitor of ...
متن کاملRotavirus infection stimulates the Cl- reabsorption process across the intestinal brush-border membrane of young rabbits.
Rotavirus is a major cause of infantile gastroenteritis worldwide. However, the mechanisms underlying fluid and electrolyte secretion associated with diarrhea remain largely unknown. We investigated the hypothesis that loss of Cl(-) into the luminal contents during rotavirus infection may be caused by a dysfunction in the chloride absorptive capacity across the intestinal brush-border membrane ...
متن کاملIdentification and characterization of rabbit small intestinal villus cell brush border membrane Na-glutamine cotransporter.
Glutamine, the primary metabolic fuel for the mammalian small intestinal enterocytes, is primarily assimilated by Na-amino acid cotransporters. Although Na-solute cotransport has been shown to exist in the brush border membrane (BBM) of the absorptive villus cells, the identity of Na-glutamine cotransport in rabbit small intestinal villus cells was unknown. Na-dependent glutamine uptake is pres...
متن کاملChronic and selective inhibition of basolateral membrane Na-K-ATPase uniquely regulates brush border membrane Na absorption in intestinal epithelial cells.
Na-K-ATPase, an integral membrane protein in mammalian cells, is responsible for maintaining the favorable intracellular Na gradient necessary to promote Na-coupled solute cotransport processes [e.g., Na-glucose cotransport (SGLT1)]. Inhibition of brush border membrane (BBM) SGLT1 is, at least in part, due to the diminished Na-K-ATPase in villus cells from chronically inflamed rabbit intestine....
متن کاملAcetate uptake by intestinal brush border membrane vesicles.
The mechanism of acetate absorption in the small intestine is not yet established. One possible mechanism is by carrier mediated Na(+)-acetate cotransport since acetate, like glucose, stimulates intestinal Na+ and water absorption in vivo. Uptake of radioactive carbon acetate by small intestinal brush border membrane vesicles was not saturable or Na+ dependent and did not respond to osmotic shr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 279 3 شماره
صفحات -
تاریخ انتشار 2000